381 research outputs found

    The roles of the "ventral" semantic and "dorsal" pathways in conduite d'approche: A neuroanatomically-constrained computational modeling investigation

    Get PDF
    Ever since the 19th century, the standard model for spoken language processing has assumed two pathways for repetition—a phonological pathway and a semantic pathway—and this idea has gained further support in the last decade. First, recent in vivo tractography studies have demonstrated both the “dorsal” (via arcuate fasciculus) and “ventral” (via extreme capsule and uncinate fasciculus) pathways connecting from the primary auditory area to the speech-motor area, the latter of which passes through a brain area associated with semantic processing (anterior temporal lobe). Secondly, neuropsychological evidence for the role of semantics in repetition is conduite d'approche, a successive phonological improvement (sometimes non-improvement) in aphasic patients' response by repeating several times in succession. Crucially, conduite d'approche is observed in patients with neurological damage in/around the arcuate fasciculus. Successful conduite d'approche is especially clear for semantically-intact patients and it occurs for real words rather than for non-words. These features have led researchers to hypothesize that the patients' disrupted phonological output is “cleaned-up” by intact lexical-semantic information before the next repetition. We tested this hypothesis using the neuroanatomically-constrained dual dorsal-ventral pathway computational model. The results showed that (a) damage to the dorsal pathway impaired repetition; (b) in the context of recovery, the model learned to compute a correct repetition response following the model's own noisy speech output (i.e., successful conduite d'approche); (c) this behavior was more evident for real words than non-words; and (d) activation from the ventral pathway contributed to the increased rate of successful conduite d'approche for real words. These results suggest that lexical-semantic “clean-up” is key to this self-correcting mechanism, supporting the classic proposal of two pathways for repetition

    Unveiling the dynamic interplay between the hub- and spoke-components of the brain's semantic system and its impact on human behaviour.

    Get PDF
    The neural architecture of semantic knowledge comprises two key structures: (i) A set of widely dispersed regions, located adjacent to the sensorimotor cortices, serve as spokes that represent various modality-specific and context-dependent contents. (ii) The anterior-temporal lobe (ATL) serves as a hub that computes the nonlinear mappings required to transform modality-specific information into pan-modality, multifaceted concepts. Little is understood regarding whether neural dynamics between the hub and spokes might flexibly alter depending on the nature of a concept and how it impinges upon behaviour. Using fMRI, we demonstrate for the first time that the ATL serves as a 'pivot' which dynamically forms flexible long-range networks with cortical modules specialised for different domains (in the present case, the knowledge about actions and places). In two experiments, we manipulated semantic congruity and asked participants to recognise visually presented items. In Experiment 1 (dual-object displays), the ATL increased its functional coupling with the bilateral frontoparietal action-sensitive system when the objects formed a pair that permitted semantically meaningful action. In Experiment 2 (objects embedded in a scene), the ATL augmented its coupling with the retrosplenial cortex of the place-sensitive system when the objects and scene formed a semantically coherent ensemble. Causative connectivity revealed that, while communication between the hub and spokes was bidirectional, the hub's directional impact on spokes dwarfed the strength of the inverse spoke-to-hub connectivity. Furthermore, the size of behavioural congruity effects co-varied with the strength of neural coupling between the ATL hub and action- / place-related spokes, evident both at the within-individual level (the behavioural fluctuation across scanning runs) and between-individual level (the behavioural variation of between participants). Together, these findings have important implications for understanding the machinery that links neural dynamics with semantic cognition

    Conceptual structure within and between modalities

    Get PDF
    Current views of semantic memory share the assumption that conceptual representations are based on multimodal experience, which activates distinct modality-specific brain regions. This proposition is widely accepted, yet little is known about how each modality contributes to conceptual knowledge and how the structure of this contribution varies across these multiple information sources. We used verbal feature lists, features from drawings, and verbal co-occurrence statistics from latent semantic analysis to examine the informational structure in four domains of knowledge: perceptual, functional, encyclopedic, and verbal. The goals of the analysis were three-fold: (1) to assess the structure within individual modalities; (2) to compare structures between modalities; and (3) to assess the degree to which concepts organize categorically or randomly. Our results indicated significant and unique structure in all four modalities: perceptually, concepts organize based on prominent features such as shape, size, color, and parts; functionally, they group based on use and interaction; encyclopedically, they arrange based on commonality in location or behavior; and verbally, they group associatively or relationally. Visual/perceptual knowledge gives rise to the strongest hierarchical organization and is closest to classic taxonomic structure. Information is organized somewhat similarly in the perceptual and encyclopedic domains, which differs significantly from the structure in the functional and verbal domains. Notably, the verbal modality has the most unique organization, which is not at all categorical but also not random. The idiosyncrasy and complexity of conceptual structure across modalities raise the question of how all of these modality-specific experiences are fused together into coherent, multifaceted yet unified concepts. Accordingly, both methodological and theoretical implications of the present findings are discussed
    • 

    corecore